Answer : The mass of
needed are, 131.8 grams
Solution : Given,
Mass of Al = 15 g
Molar mass of Al = 27 g/mole
Molar mass of
= 159.8 g/mole
First we have to calculate the moles of Al.
![\text{Moles of Al}=\frac{\text{Mass of Al}}{\text{Molar mass of Al}}=(15g)/(27g/mole)=0.55mole](https://img.qammunity.org/2019/formulas/chemistry/middle-school/yv8m1gepr0z4piesf1ce80y1p8mvb2bx30.png)
Now we have to calculate the moles of
![Br_2](https://img.qammunity.org/2019/formulas/chemistry/middle-school/6r476uc868qg10lqp83j9yl8j983oxtgox.png)
The given balanced reaction will be,
![2Al+3Br_2\rightarrow 2AlBr_3](https://img.qammunity.org/2019/formulas/chemistry/high-school/16vopiph1c3popfowhameibmh2l3e9ggfk.png)
From the balanced reaction, we conclude that
As, 2 moles of Al react with 3 moles of
![Br_2](https://img.qammunity.org/2019/formulas/chemistry/middle-school/6r476uc868qg10lqp83j9yl8j983oxtgox.png)
So, 0.55 mole of Al react with
of
![Br_2](https://img.qammunity.org/2019/formulas/chemistry/middle-school/6r476uc868qg10lqp83j9yl8j983oxtgox.png)
Now we have to calculate the mass of
![Br_2](https://img.qammunity.org/2019/formulas/chemistry/middle-school/6r476uc868qg10lqp83j9yl8j983oxtgox.png)
![\text{Mass of }Br_2=\text{Moles of }Br_2* \text{Molar mass of }Br_2](https://img.qammunity.org/2019/formulas/chemistry/middle-school/acuh2we1nh30gpakuhseh34gf5mcenqyk9.png)
![\text{Mass of }Br_2=0.825mole* 159.8=131.8g](https://img.qammunity.org/2019/formulas/chemistry/middle-school/d7x8o44csan90r5quipuirzwige6il626a.png)
Therefore, the mass of
needed are, 131.8 grams