Answer:
![(√(10x))/(4x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/41ooffggin77rgjhbft2p943g2ffv6dwgb.png)
===========================================================
Work Shown:
The idea is to multiply top and bottom by sqrt(8x) to make the denominator rational (ie get rid of the square root)
![(√(5))/(√(8x)) = (√(5)*√(8x))/(√(8x)*√(8x))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/cv5kyzo2nsgda85yjhyivz9s6x8jjv0hbo.png)
![(√(5))/(√(8x)) = (√(5*8x))/(√(8x*8x))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/wab0t4bz1j68ue7pupk9orwisx29pxk4bk.png)
![(√(5))/(√(8x)) = (√(40x))/(√((8x)^2))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/2j433c3lar1kwqi5c23akmq1c54fwroigm.png)
![(√(5))/(√(8x)) = (√(4*10x))/(8x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/715pmu596qqgz6386od1d89kt8776bjrhw.png)
![(√(5))/(√(8x)) = (√(4)*√(10x))/(8x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/95z99zxjse4cb2a33mihoq0u6jqbzruloz.png)
![(√(5))/(√(8x)) = (2*√(10x))/(8x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/rcfe412yicfcejro5isqz0ju936zrv1w1f.png)
![(√(5))/(√(8x)) = (√(10x))/(4x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ptgie9p1cg226oomyqkv2vd759addrybao.png)
where x > 0 for each step shown above
note: refresh the page if the math symbols do not show up