Source: Planetary Motion: The History of an Idea That Launched the Scientific Revolution, from earthobservatory.nasa.gov.
The ancient Greek philosophers, whose ideas shaped the worldview of Western Civilization leading up to the Scientific Revolution in the sixteenth century, had conflicting theories about why the planets moved across the sky. One camp thought that the planets orbited around the Sun, but Aristotle, whose ideas won out, believed that the planets and the Sun orbited Earth. He saw no sign that the Earth was in motion: no perpetual wind blew over the surface of the Earth, and a ball thrown straight up into the air doesn’t land behind the thrower, as Aristotle assumed it would if the Earth were moving. For Aristotle, this meant that the Earth had to be still, and the planets, the Sun, and the fixed dome of stars rotated around Earth.
For nearly 1,000 years, Aristotle’s view of a stationary Earth at the center of a revolving universe dominated natural philosophy, the name that scholars of the time used for studies of the physical world. A geocentric worldview became engrained in Christian beliefs, making it a belief of religion as much as natural philosophy. Despite that, it was a priest who brought back the idea that the Earth moves around the Sun.
In 1515, a Polish priest named Nicolaus Copernicus proposed that the Earth was a planet like Venus or Saturn, and that all planets circled the Sun. Afraid of criticism (some scholars think Copernicus was more concerned about scientific shortcomings of his theories than he was about the Church’s disapproval), he did not publish his theory until 1543, shortly before his death. The theory gathered few followers, and for a time, some of those who did give respect to the idea faced charges of heresy. Italian scientist Giordano Bruno was burned at the stake for teaching, among other heretical ideas, Copernicus’ heliocentric view of the Universe.
But the evidence for a heliocentric solar system gradually built. When Galileo pointed his telescope into the night sky in 1610, he saw for the first time in human history that moons orbited Jupiter. If Aristotle were right about all things orbiting Earth, then these moons could not exist. Galileo also observed the phases of Venus, which proved that the planet orbits the Sun. While Galileo did not share Bruno’s fate, he was tried for heresy under the Roman Inquisition and placed under house arrest for life.
At about the same time, German mathematician Johannes Kepler was publishing a series of laws that describe the orbits of the planets around the Sun. Still in use today, the mathematical equations provided accurate predictions of the planets’ movement under Copernican theory. In 1687, Isaac Newton put the final nail in the coffin for the Aristotelian, geocentric view of the Universe. Building on Kepler’s laws, Newton explained why the planets moved as they did around the Sun and he gave the force that kept them in check a name: gravity.
For questions 1 and 2, highlight the correct answer.
1) Aristotle’s understanding of the relationship between the sun and the planets was called geocentrism. According to this theory,
The sun revolves around the Earth.
The Earth revolves around the sun.
2) Scientists such as Copernicus and Galileo challenged Aristotle’s understanding of the relationship between the sun and the planets. According to their contrary view,
The sun revolves around the Earth.
The Earth revolves around the sun.
3) Why do you think Aristotle’s incorrect view lasted so long?
4) What is heresy? Why do you think scientists, like Bruno, were charged with heresy?
5) What was the role of Christianity in deciding whether ideas were accepted or rejected?
answer by 1/21
11:45pm or am and no funny buissnes