150k views
0 votes
Find the sum of a finite geometric sequence from n=1 to n=8, using the expression -2(3)^n-1

User Chokrijobs
by
7.9k points

1 Answer

3 votes

\bf \qquad \qquad \textit{sum of a finite geometric sequence} \\\\ S_n=\sum\limits_(i=1)^(n)\ a_1\cdot r^(i-1)\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases} n=n^(th)\ term\\ a_1=\textit{first term's value}\\ r=\textit{common ratio} \end{cases} \\\\\\ \sum\limits_(n=1)^(8)~-2(3)^(n-1)~~ \begin{cases} n=8\\ a_1=-2\\ r=3 \end{cases}\implies S_8=-2\left( \cfrac{1-3^8}{1-3} \right) \\\\\\ S_8=\underline{-2}\left( \cfrac{1-6561}{\underline{-2}} \right)\implies s_8=1-6561\implies S_8=-6560
User Ali Borjian
by
7.5k points

No related questions found