127k views
5 votes
Select the expression equal to ^3√ 108

a. 6
b. 3^3√ 3
c. 4^3√ 3
d. 3^3√ 4

2 Answers

1 vote
Hi there!

Prime factors [ 108 ] = 2² × 3³


\sqrt[3]{108} =
\sqrt[3]{2^(2) × 3^(3)}

Apply radical property :-


\sqrt[n]{ab} = \sqrt[n]{a} × \sqrt[n]{b}


\begin{aligned} \sqrt[3]{108} &= \sqrt[3]{2^2} × \sqrt[3]{ 3^3} \\ &= \sqrt[3]{2^2} × 3 \\ &= 3 \sqrt[3]{4} \end{aligned}

~ Hope it helps!
User Subway
by
5.4k points
3 votes
ANSWER

3∛(4)

Step-by-step explanation
108 prime factorizes into 2^2 * 3^3


\sqrt[3]{108} = \sqrt[3]{2^2 \cdot 3^3}

Apply radical property
\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}


\begin{aligned} \sqrt[3]{108} &= \sqrt[3]{2^2} \cdot \sqrt[3]{ 3^3} \\ &= \sqrt[3]{2^2} \cdot 3 \\ &= 3 \sqrt[3]{4} \end{aligned}
User Ekawas
by
5.1k points