Answer:
The correct option is 2.
Explanation:
The vertices of parallelogram ABCD are A(-1,-2), B(-2,-1), C(-4,-1), D(-3,-2).
In option 1, ABCD reflected about x-axis, y=x, x-axis, y=x.
![(x,y)\rightarrow(x,-y)\rightarrow(-y,x)\rightarrow(-y,-x)\rightarrow(-x,-y)\\eq(x,y)](https://img.qammunity.org/2019/formulas/mathematics/high-school/iakuai9261dc0waheifb0i86luwtt16t9g.png)
Therefore option 1 is incorrect.
In option 2, ABCD reflected about y=x, x-axis, y=x, y-axis.
![(x,y)\rightarrow(y,x)\rightarrow(y,-x)\rightarrow(-x,y)\rightarrow(x,y)=(x,y)](https://img.qammunity.org/2019/formulas/mathematics/high-school/yzhzsfz3vcpnrbe8wz7ccnvsoerz4cp78a.png)
Therefore the parallelogram ABCD onto itself. Option 2 is correct.
In option 3, ABCD reflected about y-axis, x-axis, y-axis.
![(x,y)\rightarrow(-x,y)\rightarrow(-x,-y)\rightarrow(x,-y)\\eq (x,y)](https://img.qammunity.org/2019/formulas/mathematics/high-school/a2j05ba86n5kdnpsk0tn1pq38dc3zmfhgo.png)
Therefore option 3 is incorrect.
In option 4, ABCD reflected about x-axis, y-axis, y-axis.
![(x,y)\rightarrow(x,-y)\rightarrow(-x,-y)\rightarrow(x,-y)\\eq (x,y)](https://img.qammunity.org/2019/formulas/mathematics/high-school/t74ifkfm8lbe4q22wh7fomedhqeahewyfp.png)
Therefore option 4 is incorrect.