128k views
5 votes
F(x)=2x^2+1 using the derivate definition

User Niki B
by
8.0k points

1 Answer

3 votes

\bf \stackrel{\textit{de} \textit{finition of a derivative as a limit}}{\lim\limits_(h\to 0)~\cfrac{f(x+h)-f(x)}{h}}\\\\ -------------------------------\\\\ f(x)=2x^2+1\implies \lim\limits_(h\to 0)~\cfrac{[2(x+h)^2+1]~~-~~[2x^2+1]}{h} \\\\\\ \lim\limits_(h\to 0)~\cfrac{[2(x^2+2xh+h^2)+1]~~-~~[2x^2+1]}{h} \\\\\\ \lim\limits_(h\to 0)~\cfrac{[2x^2+4xh+2h^2+1]~~-~~[2x^2+1]}{h}


\bf \lim\limits_(h\to 0)~\cfrac{\underline{2x^2}+4xh+2h^2\underline{+1}~~~~\underline{-2x^2-1}}{h}\implies \lim\limits_(h\to 0)~\cfrac{4xh+2h^2}{h} \\\\\\ \lim\limits_(h\to 0)~\cfrac{2\underline{h}(2x+h)}{\underline{h}}\implies \lim\limits_(h\to 0)~2(2x+h)\implies \lim\limits_(h\to 0)~2(2x+0)\implies 4x
User Jelmer
by
8.2k points