278,144 views
14 votes
14 votes
Help mehelp mehelp mehelp mehelp mehelp me

Help mehelp mehelp mehelp mehelp mehelp me-example-1
User OblongMedulla
by
3.1k points

2 Answers

21 votes
21 votes

Explanation:

use Pythagoras theorem,


{a}^(2) + {b}^(2) = {c}^(2)


{6}^(2) + {8}^(2) = {c}^(2) \\ 36 + 64 = {c}^(2) \\ c = √(100 ) \\ c = 10

User LOTUSMS
by
3.0k points
21 votes
21 votes

Answer:

The length of missing side of triangle is 10 m.

Step-by-step explanation:

Solution :

Here, we have given that the two sides of triangle are 6 m and 8 m.

Finding the third side of triangle by pythagorean theorem formula :


{\longrightarrow{\pmb{\sf{{(c)}^(2) = {(a)}^(2) + {(b)}^(2)}}}}


  • \pink\star a = 6 m

  • \pink\star b = 8 m

  • \pink\star c = ?

Substituting all the given values in the formula to find the third side of triangle :


\begin{gathered} \qquad{\longrightarrow{\sf{{(c)}^(2) = {(a)}^(2) + {(b)}^(2)}}}\\\\\qquad{\longrightarrow{\sf{{(c)}^(2) = {(6)}^(2) + {(8)}^(2)}}}\\\\\qquad{\longrightarrow{\sf{{(c)}^(2) = (6 * 6)+ (8 * 8)}}}\\\\\qquad{\longrightarrow{\sf{{(c)}^(2) = (36)+ (64)}}}\\\\\qquad{\longrightarrow{\sf{{(c)}^(2) = 36 + 64}}}\\\\\qquad{\longrightarrow{\sf{{(c)}^(2) =100}}}\\\\\qquad{\longrightarrow{\sf{c = √(100)}}}\\\\\qquad{\longrightarrow{\sf{c = 10 \: m}}}\\\\\qquad\star{\underline{\boxed{\sf{\red{c = 10 \: m}}}}}\end{gathered}

Hence, the length of missing side of triangle is 10 m.


\rule{300}{2.5}

User Sasha Koss
by
3.5k points