Let x be the width of the fence and y be the length of the fence. Then the perimeter of the fence is x+x+y+y=100. You see that x+y=50 and y=50-x.
The area of the fence is A(x)=x·y=x(50-x),

.
Find the derivative:

For x<25, A'(x)>0 and for x>25, A'(x)<0, this means that x=25 is the maximum point and A(25)=25·(50-25)=25·25=625 is the maximum area.
Answer: maximally he can enclose 625 sq. m area