116k views
5 votes
Find the rate of growth of the function a(x)=(2.046)^x

1 Answer

5 votes

\bf \qquad \textit{Amount for Exponential Growth} \\\\ A=P(1 + r)^t\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{initial amount}\\ r=rate\to r\%\to (r)/(100)\\ t=\textit{elapsed time}\\ \end{cases} \\\\\\ \boxed{A=P(1 + r)^t~~\implies ~~a(x)=(2.046)^x} \\\\\\ 1+r=2.046\implies r=2.046-1\implies r=1.046 \\\\\\ r\%=1.046\cdot 100\implies r=\stackrel{\%}{104.6}
User BlackJack
by
8.1k points