WXYZ is a rhombus with vertices W(0,4b), X(2a,0), Y(0,-4), Z(-2,0). You can see thap points W and Y lie on the y-axis and points X and Z lie on the x-axis. Then the centre of the rhombus is origin, thus W and Y are symmetric about the origin. Then b=1 and point W has coordinates (0,4). Similarly points X and Z are symmetric about the origin and a=1, hence X(2,0).
Let KLMN be middlepoints of segments WX, XY, YZ, ZW, respectively. Then
![K( (0+2)/(2), (4+0)/(2) )=(1,2) \\ L( (0+2)/(2), (-4+0)/(2) )=(1,-2) \\ M( (0-2)/(2), (-4+0)/(2) )=(-1,-2) \\ N( (0-2)/(2), (4+0)/(2) )=(-1,2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/dyt9x15zf52f3jbx36ihxybsr0uq6nuk2f.png)
.
Now find the vectors
![\overrightarrow{KL}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/zc8ysfiyvu5q2gs6llsfbqhhbsn1vl0sus.png)
,
![\overrightarrow{LM}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/6upf309ol99n94q6nuows6gncyxtq9f3sf.png)
,
![\overrightarrow{MN}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ttlghe0njfl2ayw6ktg0ju62gnq4vsfcz0.png)
and
![\overrightarrow{KN}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ole1p5s6q5qwe0vshjfhxe0s8yelv0n87h.png)
:
![\overrightarrow{KL}=(1-1,-2-2)=(0,-4) \\ \overrightarrow{KN}=(-1-1,2-2)=(-2,0) \\\overrightarrow{ML}=(-1-1,-2-(-2))=(-2,0) \\ \overrightarrow{MN}=(-1-(-1),2-(-2))=(0,4)\\\overrightarrow{KL}\cdot \overrightarrow{KN}=0\cdot (-2)+(-4)\cdot 0=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/d8j67d8tfxb29yych7fjcaqj6a8r4zzna6.png)
that means that
![\overrightarrow{KL}\perp \overrightarrow{KN}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/4s455ot5904b4tl99g3hitbnzceq60hnth.png)
.
Similarly,
![\overrightarrow{LK}\perp \overrightarrow{LM}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8m0kck6qlmcp5fvkw4fy5n5iefw9v3s7ji.png)
,
![\overrightarrow{ML}\perp \overrightarrow{MN}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3hhhe6qj8k19rsr6xcr9zqmvj7vd779qmm.png)
,
![\overrightarrow{NM}\perp \overrightarrow{NK}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/p6s67jclnk7go19iig8dhmmee3ycsjmgjw.png)
.
You prove that KLMN is a recctangle.