288,295 views
44 votes
44 votes
How do I figure this out

How do I figure this out-example-1
User Dstonek
by
2.6k points

1 Answer

22 votes
22 votes

Answer:


27^{(1)/(3)} \quad 125^{(2)/(3)} \quad 9^{(3)/(2)}

Explanation:

Rewrite 9 as 3²:


\implies 9^{(3)/(2)}=\left(3^2\right)^{(3)/(2)}


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies 3^{(2 \cdot (3)/(2))}=3^3

Therefore:


\implies 3^3= 3 \cdot 3 \cdot 3=27

---------------------------------------------------------

Rewrite 27 as 3³:


\implies 27^{(1)/(3)}=\left(3^3\right)^{(1)/(3)}


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies 3^{(3 \cdot (1)/(3))}=3^1

Therefore:


\implies 3^1=3

---------------------------------------------------------

Rewrite 125 as 5³:


\implies 125^{(2)/(3)}=\left(5^3\right)^{(2)/(3)}


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies 5^{(3 \cdot (2)/(3))}=5^2

Therefore:


\implies 5^2=5 \cdot 5=25

---------------------------------------------------------

Solution

In order, from smallest to largest:


27^{(1)/(3)} \quad 125^{(2)/(3)} \quad 9^{(3)/(2)}

User NetherGranite
by
3.1k points