107k views
4 votes
Drag the tiles to the correct boxes to complete the pairs.

Match each radical equation with its solution.

Drag the tiles to the correct boxes to complete the pairs. Match each radical equation-example-1
User Aross
by
6.5k points

1 Answer

0 votes

Answer:

  • x=5 →
    √((x-1)^3)=8
  • x=19 →
    \sqrt[4]{(x-3)^5}=32
  • x=29 →
    √((x-4)^3)=125
  • x=6 →
    \sqrt[3]{(x+2)^4}=16

Explanation:

First tile:


√((x-1)^3)=8

When we put x=5 we obtain:


√((5-1)^3)=8\\\\√(4^3)=8\\\\√(64)=8\\\\√(8^2)=8\\\\8=8

Hence, the first tile must be dragged to x=5

Second tile:


\sqrt[4]{(x-3)^5}=32\\\\(x-3)^5=(32)^4\\\\(x-3)^5=(2^5)^4

Now when x=19

we have:


(19-3)^5=(2^5)^4\\\\(16)^5=2^(20)\\\\(2^4)^5=2^(20)\\\\2^(20)=2^(20)

( Since:


(a^m)^n=a^(mn) )

Third tile:


√((x-4)^3)=125\\\\(x-4)^3=(125)^2\\\\Since\ on\ squaring\ both\ side\ of\ the\ equation\\\\(x-4)^3=(5^3)^2\\\\(x-4)^3=5^6

when x=29 we have:


(29-4)^3=5^6\\\\(25)^3=5^6\\\\(5^2)^3=5^6\\\\5^6=5^6

Fourth tile:


\sqrt[3]{(x+2)^4}=16\\\\On\ cubing\ both\ side\ of\ the\ equation\ we\ get:\\\\(x+2)^4=(16)^3\\\\(x+2)^4=(2^4)^3\\\\(x+2)^4=2^(12)

when x=6 we have:


8^4=2^(12)\\\\(2^3)^4=2^(12)\\\\2^(12)=2^(12)

User Clifton Labrum
by
6.2k points