9.6k views
3 votes
The coordinates of the vertices of ΔMDT are M (4, −3),D (−6, −1), and T (7, −8). Identify the perimeter of ΔMDT. Round each side length to the nearest tenth before adding. I understand the formula, but appear to have miscalculated in each of my attempts.

32.4
36.9
30.8
29.1

1 Answer

2 votes

M=(4,-3)\qquad D=(-6,-1)\qquad T=(7,-8)\\\\\\ |MD|=√(\big(-6-4\big)^2+\big(-1-(-3)\big)^2)=√(\big(-10\big)^2+\big(-1+3\big)^2)=\\\\=√(100+2^2)=√(104)\approx\boxed{10.2}\\\\\\\\ |DT|=√(\big(7-(-6)\big)^2+\big(-8-(-1)\big)^2)=√(\big(7+6\big)^2+\big(-8+1\big)^2)=\\\\=√(13^2+(-7)^2)=√(169+49)=√(218)\approx\boxed{14.8}\\\\



|TM|=√(\big(4-7\big)^2+\big(-3-(-8)\big)^2)=√(\big(-3\big)^2+\big(-3+8\big)^2)=\\\\=√(9+5^2)=√(9+25)=√(34)\approx\boxed{5.8}

So the perimeter:


P_(\Delta MDT)=|MD|+|DT|+|TM|\approx10.2+14.8+5.8=\boxed{30.8}

Answer C.
User MGOwen
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories