290,962 views
28 votes
28 votes
Please answer this with solution thanks​

Please answer this with solution thanks​-example-1
User Beefon
by
2.9k points

1 Answer

20 votes
20 votes

Answer:

Function 1 is neither odd nor even

Function 2 is odd

Explanation:

Here, you must first understand the expression of odd and even functions:

Even: f(x) = f(-x)

Odd: f(-x) = -f(x)

Question 1:


{ \tt{f(x) = x + 3}} \\ { \rm{when \: x = - x}} \\ { \tt{f( - x) = - x + 3}} \\ { \tt{f( - x) \: is \: neither \: even \: nor \: odd }}

Question 2:


{ \tt{f(x) = - { \green{{3x}^(3) + 6x }}}} \\ { \rm{when \: x = - x}} \\ { \tt{f( - x) = - 3 {( - x)}^(3) + 6( - x) }} \\ { \tt{f( - x) = 3 {x}^(3) - 6x}} \\ { \tt{f( - x) = - \{ { \green{- 3 {x}^(3) + 6x }}}} \} \\ { \tt{f( - x) = - f(x)}}

User Omilke
by
3.1k points