Answer:
x = 65°
y = 49°
z = 114°
w = 93°
Explanation:
Since ∠y + 131° = 180°
So ∠y = 180° - 131°
= 49°
From ΔDEF,
∠x + 42° + 73° = 180°
∠x + 115° = 180°
∠x = 180 - 115
= 65°
From ΔDGL
∠x + ∠y + ∠DLG = 180°
65° + 49° + ∠DLG = 180°
∠DLG = 180 - 114
= 66°
Now ∠z + ∠DLG = 180° [Supplementary angles]
∠z = 180 - 66
= 114°
From ΔIJC,
∠142° + ∠IJC = 180° [ Supplementary angles]
∠IJC = 180 - 142
= 38°
w + 38° + 49°=180°
w + 87° = 180°
w = 180° - 87°
w = 93°