To find the inverse, we swap the variables y and x, then solve for the new y.
3a.

Swapping the variables:

Solving for y:

The domain of this inverse is

.
3b.

Swapping:

Solving for y:

The domain of this inverse is

.
3c.
![y=\sqrt[3]{(x-7)/(3)}](https://img.qammunity.org/2019/formulas/mathematics/high-school/y5t7ljsnpcnfwfe238zftytf2o3oo7z57n.png)
Swapping:
![x=\sqrt[3]{(y-7)/(3)}](https://img.qammunity.org/2019/formulas/mathematics/high-school/tg01do9nitcb3p0mgx4vyhuqg5dkfxqf6n.png)
Solving for y:

The domain of this inverse is all real numbers.
4a.

,


4c.
![y=\sqrt[3]{(x-7)/(3)}](https://img.qammunity.org/2019/formulas/mathematics/high-school/y5t7ljsnpcnfwfe238zftytf2o3oo7z57n.png)
,

![y=\sqrt[3]{((3x^3+7)-7)/(3)} \\ y=\sqrt[3]{(3x^3)/(3)} \\ y=\sqrt[3]{x^3} \\ y=x](https://img.qammunity.org/2019/formulas/mathematics/high-school/3egl865160qf7xfptj6wb6ute2p8k8errr.png)
![y=3(\sqrt[3]{(x-7)/(3)})^3+7 \\ y = 3({(x-7)/(3)})+7 \\ y = (x-7)+7 \\ y=x](https://img.qammunity.org/2019/formulas/mathematics/high-school/p9r9d5t3h4gfxuapdd0ymft72u1dl99mat.png)