175k views
2 votes
Evaluate the line integral, where c is the given curve. c y3 ds,

c.x = t3, y = t, 0 ≤ t ≤ 2

1 Answer

6 votes
Parameterizing
\mathcal C by


\mathbf r(t)=(t^3,t)

with
0\le t\le2, we have


\mathrm ds=\|\mathbf r'(t)\|\,\mathrm dt=√((3t^2)^2+1^2)\,\mathrm dt=√(9t^4+1)\,\mathrm dt

So


\displaystyle\int_(\mathcal C)y^3\,\mathrm ds=\int_(t=0)^(t=2)t^3√(9t^4+1)\,\mathrm dt

=\displaystyle\frac1{36}\int_0^236t^3√(9t^4+1)\,\mathrm dt

=\displaystyle\frac1{36}\int_(u=1)^(u=145)\sqrt u\,\mathrm du

=(145^(3/2)-1)/(54)
User Kenji Yoshida
by
5.7k points