65.3k views
0 votes
A chord An divides a circle of radius 3 cm into two segments. If AB subtends a central angle of 45, find the area of the minor segment

User Mxxk
by
7.3k points

1 Answer

2 votes
check the picture below.

so the chord is the one in red there, making the segment, in green there, with a central angle of 45°, and the minor segment will be that green one.


\bf \textit{area of a segment of a circle}\\\\ A=\cfrac{r^2}{2}\left[ \cfrac{\pi \theta }{180} - sin(\theta) \right]~~ \begin{cases} r=radius\\ \theta =angle~in\\ \qquad degrees\\ ------\\ r=3\\ \theta =45 \end{cases} \\\\\\ A=\cfrac{3^2}{2}\left[ \cfrac{\pi(45) }{180} - sin(45^o) \right]\implies A=\cfrac{9}{2}\left[ \cfrac{\pi }{4}-\cfrac{√(2)}{2} \right] \\\\\\ A=\cfrac{9}{2}\left( \cfrac{\pi -2√(2)}{4} \right)\implies A\approx 0.3523112199491
A chord An divides a circle of radius 3 cm into two segments. If AB subtends a central-example-1
User Khanh
by
8.9k points