Answer:
The correct option is A.
Explanation:
The given expression is
![(√(12)+√(6))(√(6)-√(10))](https://img.qammunity.org/2019/formulas/mathematics/high-school/wexrqyv4od35osp5nb2a3uxse8z9iwtwq4.png)
Using distributive property of multiplication, we get
![√(12)(√(6)-√(10))+√(6)(√(6)-√(10))](https://img.qammunity.org/2019/formulas/mathematics/high-school/dr1otx3na93tqrjxexaoi4v1rz6k6e8tlv.png)
Using distributive property of multiplication, we get
![√(12)(√(6))+√(12)(-√(10))+√(6)(√(6))+√(6)(-√(10))](https://img.qammunity.org/2019/formulas/mathematics/high-school/aj4epxleuor9uiadd0hzna3tqyuxoh8jt8.png)
![√(72)-√(120)+√(36)-√(60)](https://img.qammunity.org/2019/formulas/mathematics/high-school/2dv3bmzh1u9t73bwc45gtfpjyfm4wpu5sv.png)
![6√(2)-2√(30)+6-2√(15)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ljcswj1mkiis3odaefffw1ygrnfkhha3k7.png)
The simplified form of the given expression is
. Therefore the correct option is A.