10.3k views
1 vote
Arrange these functions from the greatest to the least value based on the average rate of change in the specified interval.

Tiles:
f(x) = x2 + 3x
interval: [-2, 3]

f(x) = 3x - 8
interval: [4, 5]

f(x) = x2 - 2x
interval: [-3, 4]

f(x) = x2 - 5
interval: [-1, 1]

Arrange these functions from the greatest to the least value based on the average-example-1

1 Answer

4 votes
By definition, the average change of rate is given by:

AVR = (f(x2)-f(x1))/(x2-x1)
We will calculate AVR for each of the functions.
We have then:

f(x) = x^2 + 3x interval: [-2, 3]:

f(-2) = x^2 + 3x = (-2)^2 + 3(-2) = 4 - 6 = -2 f(3) = x^2 + 3x = (3)^2 + 3(3) = 9 + 9 = 18

AVR = (-2-18)/(-2-3)

AVR = (-20)/(-5)

AVR = 4

f(x) = 3x - 8 interval: [4, 5]:

f(4) = 3(4) - 8 = 12 - 8 = 4 f(5) = 3(5) - 8 = 15 - 8 = 7

AVR = (7-4)/(5-4)

AVR = (3)/(1)

AVR = 3

f(x) = x^2 - 2x interval: [-3, 4]

f(-3) = (-3)^2 - 2(-3) = 9 + 6 = 15 f(4) = (4)^2 - 2(4) = 16 - 8 = 8

AVR = (8-15)/(4+3)

AVR = (-7)/(7)

AVR = -1

f(x) = x^2 - 5 interval: [-1, 1]

f(-1) = (-1)^2 - 5 = 1 - 5 = -4 f(1) = (1)^2 - 5 = 1 - 5 = -4

AVR = (-4+4)/(1+1)

AVR = (0)/(2)

AVR = 0


Answer:
these functions from the greatest to the least value based on the average rate of change are:
f(x) = x^2 + 3x
f(x) = 3x - 8
f(x) = x^2 - 5
f(x) = x^2 - 2x
User Keith Stein
by
6.6k points