First, find the height of the pyramid using the volume formula.
Then use the Pythagorean theorem to find the slant height.
V = (1/3)Ah
48 = (1/3)(6^2)h
144 = 36h
h = 4
Since the side of the base is 6 in., half the side is 3 in.
The height of the pyramid is 4 in.
Call the slant height S.
3^2 + 4^2 = S^2
9 + 16 = S^2
25 = S^2
S = 5
Answer: The slant height is 5 in.