111k views
5 votes
If the area of a rectangle is 24a^2b and the length is 8ab^2, what would be the width of the rectangle, given that width is found by dividing area by length? Simplify the answer. 1. 3a/b 2. b/3a 3. 3/ab 4. 3ab

2 Answers

3 votes

3a

---------

B

Divide the #'s

User Aurimas Deimantas
by
6.1k points
5 votes

\bf ~~~~~~~~~~~~\textit{negative exponents} \\\\ a^(-n) \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^(-n) \qquad \qquad a^n\implies \cfrac{1}{a^(-n)} \\\\ -------------------------------


\bf \textit{area of a rectangle}\\\\ A=WL~~ \begin{cases} W=width\\ L=length\\ -----\\ A=24a^2b\\ L=8ab^2 \end{cases}\implies 24a^2b=W(8ab^2)\implies \cfrac{24a^2b}{8ab^2}=W \\\\\\ \cfrac{24}{8}\cdot \cfrac{a^2b}{ab^2}=W\implies 3\cdot \cfrac{a^2a^(-1)}{b^2b^(-1)}=W\implies 3\cdot \cfrac{a^(2-1)}{b^(2-1)}=W\implies \cfrac{3a}{b}=W
User Ettozyame
by
5.5k points