108k views
2 votes
According to the Rational Root Theorem, the following are potential roots of f(x) = 6x4 + 5x3 – 33x2 – 12x + 20. -5/2,-2, 1, 10/3 Which is an actual root of f(x)?

User Kiana
by
8.3k points

2 Answers

7 votes

Answer:

A. on edge 2020

User Trey Combs
by
7.6k points
4 votes

Answer:

The actual root of f(x) is -5/2 (first option)

Explanation:

A root of f(x) is a value of the variable "x" that makes f(x)=0

1) With x=-5/2

f(-5/2)=6(-5/2)^4+5(-5/2)^3-33(-5/2)^2-12(-5/2)+20

f(-5/2)=6(5^4/2^4)+5(-5^3/2^3)-33(5^2/2^2)+6(5)+20

f(-5/2)=6(625/16)-5(125/8)-33(25/4)+30+20

f(-5/2)=3(625/8)-625/8-825/4+50

f(-5/2)=1,875/8-625/8-825/4+50

f(-5/2)=[1,875-625-2(825)+8(50)]/8

f(-5/2)=(1,875-625-1,650+400)/8

f(-5/2)=0/8

f(-5/2)=0 then x=-5/2 is a root of f(x)


2) With x=-2

f(-2)=6(-2)^4+5(-2)^3-33(-2)^2-12(-2)+20

f(-2)=6(2^4)+5(-2^3)-33(2^2)+24+20

f(-2)=6(16)-5(8)-33(4)+44

f(-2)=96-40-132+44

f(-2)=-32 different of 0, then x=-2 is not a root of f(x)


3) With x=1

f(1)=6(1)^4+5(1)^3-33(1)^2-12(1)+20

f(1)=6(1)+5(1)-33(1)-12+20

f(1)=6+5-33+8

f(1)=-14 different of 0, then x=1 is not a root of f(x)


4) With x=10/3

f(10/3)=6(10/3)^4+5(10/3)^3-33(10/3)^2-12(10/3)+20

f(10/3)=6(10^4/3^4)+5(10^3/3^3)-33(10^2/3^2)-4(10)+20

f(10/3)=6(10,000/81)+5(1,000/27)-33(100/9)-40+20

f(10/3)=2(10,000/27)+5,000/27-11(100/3)-20

f(10/3)=20,000/27+5,000/27-1,100/3-20

f(10/3)=[20,000+5,000-9(1,100)-27(20)]/27

f(10/3)=(20,000+5,000-9,900-540)/27

f(10/3)=14,560/27 different of 0, then x=10/3 is not a root of f(x)

User Dominique Barton
by
8.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories