26.3k views
4 votes
Which function has a vertex on the y-axis?

A.f(x) = (x – 2)2
B.f(x) = x(x + 2)
C.f(x) = (x – 2)(x + 2)
D.f(x) = (x + 1)(x – 2)

1 Answer

2 votes
Answer: Option C. f(x)=(x-2)(x+2)

A quadratic function f(x) has a vertex on the y-axis if the abcsissa of the vertex h is equal to zero
f(x)=ax^2+bx+c
h=-b/(2a)

A. f(x)=(x-2)^2

Using (a-b)^2=a^2-2ab+b^2
With a=x and b=2
f(x)=x^2-2(x)(2)+2^2
f(x)=x^2-4x+4
a=1, b=-4, c=4
h=-(-4)/[2(1)]=4/2→h=2 different of zero, then the function has not a vertex on the y-axis

B. f(x)=x(x+2)

Eliminating the parentheses using the distributive property in the multiplication:
f(x)=x x + 2x
f(x)=x^(1+1)+2x
f(x)=x^2+2x
a=1, b=2, c=0
h=-2/[2(1)]=-2/2→h=-1 different of zero, then the function has not a vertex on the y-axis

C. f(x)=(x-2)(x+2)

Eliminating the parentheses using (a-b)(a+b)=a^2-b^2; with a=x and b=2
f(x)=x^2-2^2
f(x)=x^2-4
a=1, b=0, c=-4
h=-0/[2(1)]=-0/2→h=0, then the function has a vertex on the y-axis

D. f(x)=(x+1)(x-2)

Eliminating the parentheses using (x+d)(x+e)=x^2+(d+e)x+d e; with d=1 and e=-2
f(x)=x^2+[1+(-2)]x+(1)(-2)
f(x)=x^2+(1-2)x-2
f(x)=x^2+(-1)x-2
f(x)=x^2-x-2
a=1, b=-1, c=-2
h=-(-1)/[2(1)]→h=1/2 different of zero, then the function has not a vertex on the y-axis
User Solkar
by
7.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories