221k views
4 votes
If f(x)= x/2-2 and g(x)= 2x^2+x-3, find (f+g)(x).

If f(x)= x/2-2 and g(x)= 2x^2+x-3, find (f+g)(x).-example-1
User Daiwen
by
7.9k points

2 Answers

4 votes
Add all the corresponding parts of each function. The degree of x determines which correspond.

2x^2 (degree 2)
x + x/2 (degree 1)
-3-2 (degree 0)

So you get B
2x^2 + 3x/2 - 5
User Grant Zukowski
by
8.4k points
6 votes

Answer: B.
2x^2 + (3x)/(2) - 5

Explanation:

Here, the given functions are,


f(x) = (x)/(2) - 2


g(x) = 2x^2 + x - 3


(f+g)x = f(x) + g(x)


(f+g)x=(x)/(2) - 2 + 2x^2 + x - 3


(f+g)x=(3x)/(2) - 5 + 2x^2


(f+g)x=2x^2 + (3x)/(2) - 5

Option B is correct.

User Samturner
by
7.7k points