176k views
0 votes
The recursive rule for a geometric sequence is given.

a1=2/5;An=5An−1



Enter the explicit rule for the sequence.

an=

User Hilario
by
5.8k points

2 Answers

1 vote

Answer: 2/5(5)^n-1

Step-by-step explanation: Just took the test, answer it exactly like that

User Akvel
by
5.4k points
2 votes
Answer: The explicit rule for the geometric sequence is:
an=(2/5) (5)^(n-1), for n=1, 2, 3, 4, ...

Solution:

a1=2/5
an=5 (an-1)

n=2→a2=5 (a2-1)= 5 (a1)= 5 (2/5)→a2= (2/5) (5)
n=3→a3= 5 (a3-1)= 5 (a2)= 5 [(2/5) (5)]=(2/5) (5)^(1+1)→ a3=(2/5) (5)^2
n=4→a4= 5 (a4-1)= 5 (a3)= 5 [(2/5) (5)^2]= (2/5) (5)^(2+1)→ a4=(2/5) (5)^3

a1=2/5=(2/5) (1)=(2/5) (5)^0→a1=(2/5) (5)^(1-1)
a2=(2/5) (5)=(2/5) (5)^1→a2=(2/5) (5)^(2-1)
a3=(2/5) (5)^2→a3=(2/5) (5)^(3-1)
a4=(2/5) (5)^3→a4=(2/5) (5)^(4-1)

Then:
an=(2/5) (5)^(n-1), for n=1, 2, 3, 4, ...
User Pierre Laporte
by
5.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.