76.7k views
1 vote
Solve question 4
please please

Solve question 4 please please-example-1

1 Answer

3 votes

(\cos\theta)/(\csc\theta+1)+(\cos\theta)/(\csc\theta-1)=2\tan\theta\\\\L_s=(\cos\theta)/((1)/(\sin\theta)+1)+(\cos\thets)/((1)/(\sin\theta)-1)=(\cos\theta)/((1)/(\sin\theta)+(\sin\theta)/(\sin\theta))+(\cos\theta)/((1)/(\sin\theta)-(\sin\theta)/(\sin\theta))

=(\cos\theta)/((1+\sin\theta)/(\sin\theta))+(\cos\theta)/((1-\sin\theta)/(\sin\theta))=(\cos\theta\sin\theta)/(1+\sin\theta)+(\cos\theta\sin\theta)/(1-\sin\theta)\\\\=(\cos\theta\sin\theta(1-\sin\theta))/((1+\sin\theta)(1-\sin\theta))+(\cos\theta\sin\theta(1+\sin\theta))/((1+\sin\theta)(1-\sin\theta))\\\\=(cos\theta\sin\theta-\cos\theta\sin^2\theta+\cos\theta\sin\theta+\cos\theta\sin^2\theta)/(1^2-\sin^2\theta)

=(2\sin\theta\cos\theta)/(1-\sin^2\theta)=(2\sin\theta\cos\theta)/(\cos^2\theta)=(2\sin\theta)/(\cos\theta)=2\cdot(\sin\theta)/(\cos\theta)=2\tan\theta=R_s


Used:\\\csc x=(1)/(\sin x)\\\\\sin^2x+\cos^2x=1\to \cos^2x=1-\sin^2x\\\\\tan x=(\sin x)/(\cos x)
User Stefano Nardo
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories