75.1k views
5 votes
How does the graph of y = sec(x + 3) – 7 compare with the graph of y = sec(x)?

2 Answers

2 votes

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ % function transformations for trigonometric functions % templates f(x)=Asin(Bx+C)+D \\\\ f(x)=Acos(Bx+C)+D\\\\ f(x)=Atan(Bx+C)+D \\\\ -------------------


\bf \bullet \textit{ stretches or shrinks}\\ ~~~~~~\textit{horizontally by amplitude } A\cdot B\\\\ \bullet \textit{ flips it upside-down if }A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }B\textit{ is negative}


\bf ~~~~~~\textit{reflection over the y-axis} \\\\ \bullet \textit{ horizontal shift by }(C)/(B)\\ ~~~~~~if\ (C)/(B)\textit{ is negative, to the right}\\\\ ~~~~~~if\ (C)/(B)\textit{ is positive, to the left}\\\\ \bullet \textit{vertical shift by }D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}


\bf \bullet \textit{function period or frequency}\\ ~~~~~~(2\pi )/(B)\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ ~~~~~~(\pi )/(B)\ for\ tan(\theta),\ cot(\theta)

with that template in mind,


\bf y=sec(\stackrel{B}{1}x+(C)/(3))\stackrel{D}{-7}

the derived function has a horizontal shift of C/B or +3/1 or +3, namely 3 units to the left.

and has a vertical shift D = -7, of 7 units downwards.
User Wand
by
8.0k points
1 vote

Answer:

C

Explanation:

User Prateeksarda
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories