Let x be a first positive integer number, the second number is 5 more then x and you can write that the second number is x+5.
The recipracals of numbers x and x+5 are
![(1)/(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/7a3sti7k0w88cfa9s4ossfiaat9fdhk49u.png)
and
![(1)/(x+5)](https://img.qammunity.org/2019/formulas/mathematics/college/16btnkin0akw14cc8sbttxrc91zgbg31ed.png)
, respectively. Since x<x+5, then
![(1)/(x) \ \textgreater \ (1)/(x+5)](https://img.qammunity.org/2019/formulas/mathematics/college/qz2tdlh3cq9yrx0j11hr77z04ao89jhba1.png)
and
![(1)/(x)- (1)/(x+5)=(5)/(14)](https://img.qammunity.org/2019/formulas/mathematics/college/ert75f21hkb3jhigwxzxcuf75nucc1q3kr.png)
.
To solve this equation you have to find common denominator:
![((x+5)-x)/(x(x+5))= (5)/(14)](https://img.qammunity.org/2019/formulas/mathematics/college/ltyu5bfs6xzj0w3o3gozv50awu0rs44cae.png)
![(5)/(x(x+5))= (5)/(14)](https://img.qammunity.org/2019/formulas/mathematics/college/fqhg54mqjzpyrb29xqva15mkfd5ti82dhd.png)
![(1)/(x(x+5))= (1)/(14)](https://img.qammunity.org/2019/formulas/mathematics/college/fkxncrbk0zmc86l577nwgz0zdp25smpzty.png)
, then
![x(x+5)=14](https://img.qammunity.org/2019/formulas/mathematics/college/g039gd943flnt14jrxzm6552v36n9mvasa.png)
and
![x^(2) +5x-14=0](https://img.qammunity.org/2019/formulas/mathematics/college/se6vz7d0xq06cca04ymqusv4gfs00g9tol.png)
![D=5^2-4\cdot(-14)=25+56=81,\ √(D)=9](https://img.qammunity.org/2019/formulas/mathematics/college/pxquotlt604xhhrla53svgpeoq8lgl44ju.png)
and solutions are
![x_1= (-5+9)/(2) =2](https://img.qammunity.org/2019/formulas/mathematics/college/ojx5rxdu1swv03s18ifjmkqt06gvo9302f.png)
and
![x_2= (-5-9)/(2) =-7](https://img.qammunity.org/2019/formulas/mathematics/college/td8lbc6qgd1yvinb1tnhg5iskp7bt9ug1w.png)
.
Since x is positive integer, the right solution is x=2 and incorrect x=-7.
Answer: x=2, x+5=7