138k views
1 vote
Please solve Questions - 18 , 20 , 21
Show proper work. Thank-you!

Please solve Questions - 18 , 20 , 21 Show proper work. Thank-you!-example-1
User Arleg
by
8.4k points

1 Answer

2 votes
18. If f(x)=[xsin πx] {where [x] denotes greatest integer function}, then f(x) is:
since x denotes the greatest integers which could the negative or the positive values, also x has a domain of all real numbers, and has no discontinuous point, then x is continuous in (-1,0).

Answer: B]

20. Given that g(x)=1/(x^2+x-1) and f(x)=1/(x-3), then to evaluate the discontinuous point in g(f(x)) we consider the denominator of g(x) and f(x). g(x) has no discontinuous point while f(x) is continuous at all points but x=3. Hence we shall say that g(f(x)) will also be discontinuous at x=3. Hence the answer is:
C] 3

21. Given that f(x)=[tan² x] where [.] is greatest integer function, from this we can see that tan x is continuous at all points apart from the point 180x+90, where x=0,1,2,3....
This implies that since some points are not continuous, then the limit does not exist.
Answer is:
A]


User Voreny
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories