152k views
4 votes
Find sin A and sec B given a=2 b=11

User Sandi
by
6.0k points

2 Answers

4 votes
if there is a triangle with Sid a and b then sina b/✓a2+b2and seven=✓a2+b2/a
User Ioko
by
5.7k points
6 votes

Answer:


\sin A=(2)/(5\sqrt5)


\sec B=(5\sqrt5)/(11)

Explanation:

Given:
a=2,b=11

Using pythagoreous theorem:


c^2=a^2+b^2


c^2=11^2+2^2


c=5√(5)

Trigonometric Identities:


\sin \theta=\frac{\text{Opposite}}{\text{Hypotenuse}}


\sin A=(a)/(c)


\sin A=(2)/(5\sqrt5)


\sec B=(c)/(b)


\sec B=(5\sqrt5)/(11)

Hence, The value of trigonometric identity


\sin A=(2)/(5\sqrt5)


\sec B=(5\sqrt5)/(11)

User Tbatch
by
5.3k points