Answer:
and
.
Explanation:
We have been given a system of equations. We are asked to solve our given system of equations.
![10x+y=-20...(1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/48igo7729707b9sw6p5gkc4z88w7tw18sv.png)
![y=2x^2-4x-16...(1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/w1x7qdqyndi18ejyjfri4jogmtv6c517m6.png)
We will use substitution method to solve our given system. From equation (1) we will get,
![y=-20-10x](https://img.qammunity.org/2019/formulas/mathematics/high-school/r0f9a5ndxqwenhbw44qm9cqo9t7ut8nvf4.png)
Substituting this value in equation (1) we will get,
![-20-10x=2x^2-4x-16](https://img.qammunity.org/2019/formulas/mathematics/high-school/2jkajjtpvtqpyztg5plhq34ojpb7e3r8lv.png)
![-20+20-10x=2x^2-4x-16+20](https://img.qammunity.org/2019/formulas/mathematics/high-school/umiqrmuw76aw1skz34zsvr70kdnljx3gzt.png)
![-10x=2x^2-4x+4](https://img.qammunity.org/2019/formulas/mathematics/high-school/n0lf32adkni4faews7aih9n8m07fqa60yt.png)
![-10x+10x=2x^2-4x+10x+4](https://img.qammunity.org/2019/formulas/mathematics/high-school/dghsf2ecv800wcbwanhmp2vvwpx49t9ngc.png)
![0=2x^2+6x+4](https://img.qammunity.org/2019/formulas/mathematics/high-school/pzyvuygrq6eam668sjvge5ol79hxadh2zl.png)
Now we will use quadratic formula to solve for x.
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/anbffapy80mickqb01jpbq5ttpr4bw5vtb.png)
![x=(-6\pm √(6^2-4*2*4))/(2*2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/kon44e6e85ng9k2e19bmjlir7d5in7xrvk.png)
![x=(-6\pm √(36-32))/(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/rb2tlb4h4xv1ec2bykd5hby8btq644rv9x.png)
![x=(-6\pm √(4))/(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/rdgbvlzbvniq3gapnk35f4k56mrf8d7ppu.png)
![x=(-6)/(4)\pm (√(4))/(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/285vvc4llf366zlu9kswt2bkdwmslcbqdd.png)
![x=-1.5\pm (2)/(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/68l210vgdu48kkbl61bib9fvqr89a0stdy.png)
![x=-1.5\pm 0.5](https://img.qammunity.org/2019/formulas/mathematics/high-school/8qt7lumyh121bri0irv2empygpfc94vx75.png)
![x=-1.5-0.5\text{ or }-1.5+0.5](https://img.qammunity.org/2019/formulas/mathematics/high-school/871rzsgun0m4pw6gamtn3xmvqk7cqc28p8.png)
![x=-2\text{ or }-1](https://img.qammunity.org/2019/formulas/mathematics/high-school/cevouy6y9cjo9gls8fr8pn80lazxpcafy4.png)
Now to find y values we will substitute
in equation (1) as.
![10(-2)+y=-20](https://img.qammunity.org/2019/formulas/mathematics/high-school/cdn8q5nt6r204osjj1wv02uoep0a38nx2d.png)
![-20+y=-20](https://img.qammunity.org/2019/formulas/mathematics/high-school/uo5vxvbkc9pkyf5lyy27uhi0ya0mg3b2gj.png)
![-20+20+y=-20+20](https://img.qammunity.org/2019/formulas/mathematics/high-school/s1thnow7k220cv1tanytnhg0z253yux1b5.png)
![y=0](https://img.qammunity.org/2019/formulas/mathematics/college/r0jlugcrkk1got8vuljk2uj8h02jl3vmti.png)
Now, we will substitute
in equation (1) as.
![10(-1)+y=-20](https://img.qammunity.org/2019/formulas/mathematics/high-school/7tbfg6mbx7zqmsd198ocjn7g0vtjedc1xd.png)
![-10+y=-20](https://img.qammunity.org/2019/formulas/mathematics/high-school/o1j8vuucyvdf2ixwo1m8tkmbhqlrozns4h.png)
![-10+10+y=-20+10](https://img.qammunity.org/2019/formulas/mathematics/high-school/g98cgp8s8wza2ruhrtj8cy0e3ha98bm5i9.png)
![y=-10](https://img.qammunity.org/2019/formulas/mathematics/high-school/oewezd1haj4uyakoxwodxkf01muyybxas6.png)
Therefore, there are two solutions for our given system that are
and
.