Computing the line integral directly would be easy enough, but in general it's worth checking to see if the vector field is conservative; that is, whether there exists a scalar function
![f](https://img.qammunity.org/2019/formulas/mathematics/middle-school/oik7yupcmpytkdh73mn48wrah2iyt6go7o.png)
whose gradient corresponds exactly to the given vector field
![\mathbf f](https://img.qammunity.org/2019/formulas/mathematics/college/5t6njf65pn8quhnoqn5sjetogi3vqyctcj.png)
, or
![\\abla f=\mathbf f](https://img.qammunity.org/2019/formulas/mathematics/college/le5lt1weus1e5jqmovseqezjlfulrmysgu.png)
. Equivalently, we're looking for
![f](https://img.qammunity.org/2019/formulas/mathematics/middle-school/oik7yupcmpytkdh73mn48wrah2iyt6go7o.png)
such that
![(\partial f)/(\partial x)=yz](https://img.qammunity.org/2019/formulas/mathematics/college/o2gkxp004bazj5qd6q5jkbsw1czvceyhr7.png)
![(\partial f)/(\partial y)=xz](https://img.qammunity.org/2019/formulas/mathematics/college/j0mhxug4yqfzsx7t1ppujuu7lgx111u4gv.png)
![(\partial f)/(\partial z)=xy](https://img.qammunity.org/2019/formulas/mathematics/college/6q45gwavf02m7k5fb8gop42410crut92lv.png)
We find that
![f_x=yz\implies f(x,y,z)=xyz+g(y,z)](https://img.qammunity.org/2019/formulas/mathematics/college/jt010wh1gvvartox3fbbdcj4d0wd1rt32o.png)
![f_y=xz+g_y=xz\implies g_y=0\implies g(y,z)=h(z)](https://img.qammunity.org/2019/formulas/mathematics/college/p4h2ziena0d0wbp87n7pvntjdvzgr72ofh.png)
![f_z=xy+h_z=xy\implies h_z=0\implies h(z)=C](https://img.qammunity.org/2019/formulas/mathematics/college/3jrainltfo7fk9hapmteqcrdfxazwwovvg.png)
and so there is indeed such a function
![f](https://img.qammunity.org/2019/formulas/mathematics/middle-school/oik7yupcmpytkdh73mn48wrah2iyt6go7o.png)
, with
![f(x,y,z)=xyz+C](https://img.qammunity.org/2019/formulas/mathematics/college/i6o3ap6trwk0jy3i2qlrbac6qyeipbv1c7.png)
.
Thus by the fundamental theorem of calculus, the line integral is path-independent, and
![\displaystyle\int_(\mathcal C)\mathbf f\cdot\mathrm d\mathbf r=\int_(\mathcal C)\\abla f\cdot\mathrm d\mathbf r=f(\mathbf b)-f(\mathbf a)](https://img.qammunity.org/2019/formulas/mathematics/college/thhyw3lq0o7n947z4wprcqjpyt6v6vagox.png)
where
![\mathcal C](https://img.qammunity.org/2019/formulas/mathematics/college/mwv0q16hy6kia49ez9dt7qkw1w2werp6p1.png)
is any path starting at
![\mathbf a](https://img.qammunity.org/2019/formulas/mathematics/college/mb9kt2esvrc14td2qn4swpbj2ywzgkzydu.png)
and ending at
![\mathbf b](https://img.qammunity.org/2019/formulas/mathematics/college/gmt7rsxo6bwx4qatptlhwl8q7vfmootycp.png)
. Here,
![\displaystyle\int_(\mathcal C)\mathbf f\cdot\mathrm d\mathbf r=f(9,7,4)-f(0,0,0)=252](https://img.qammunity.org/2019/formulas/mathematics/college/5yfzya5942gq7xplg62kntpb4el8ptn9nr.png)