121k views
5 votes
"find the reduction formula for the integral" sin^n(18x)

User CaTx
by
8.0k points

1 Answer

7 votes
Let


I(n,a)=\displaystyle\int\sin^nax\,\mathrm dx
For demonstration on how to tackle this sort of problem, I'll only work through the case where
n is odd. We can write


\displaystyle\int\sin^nax\,\mathrm dx=\int\sin^(n-2)ax\sin^2ax\,\mathrm dx=\int\sin^(n-2)ax(1-\cos^2ax)\,\mathrm dx

\implies I(n,a)=I(n-2,a)-\displaystyle\int\sin^(n-2)ax\cos^2ax\,\mathrm dx

For the remaining integral, we can integrate by parts, taking


u=\sin^(n-3)ax\implies\mathrm du=a(n-3)\sin^(n-4)ax\cos ax\,\mathrm dx
\mathrm dv=\sin ax\cos^2ax\,\mathrm dx\implies v=-\frac1{3a}\cos^3ax


\implies\displaystyle\int\sin^(n-2)ax\cos^2ax\,\mathrm dx=-\frac1{3a}\sin^(n-3)ax\cos^3ax+(a(n-3))/(3a)\int\sin^(n-4)ax\cos^4ax\,\mathrm dx

For this next integral, we rewrite the integrand


\sin^(n-4)ax\cos^4ax=\sin^(n-4)ax(1-\sin^2ax)^2=\sin^(n-4)ax-2\sin^(n-2)ax+\sin^nax

\implies\displaystyle\int\sin^(n-4)ax\cos^4ax\,\mathrm dx=I(n-4,a)-2I(n-2,a)+I(n,a)

So putting everything together, we found


I(n,a)=I(n-2,a)-\displaystyle\int\sin^(n-2)ax\cos^2ax\,\mathrm dx

I(n,a)=I(n-2,a)-\left(-\frac1{3a}\sin^(n-3)ax\cos^3ax+\frac{n-3}3\displaystyle\int\sin^(n-4)ax\cos^4ax\,\mathrm dx\right)

I(n,a)=I(n-2,a)-\frac{n-3}3\bigg(I(n-4,a)-2I(n-2,a)+I(n,a)\bigg)+\frac1{3a}\sin^(n-3)ax\cos^3ax

\frac n3I(n,a)=\frac{2n-3}3I(n-2,a)-\frac{n-3}3I(n-4,a)+\frac1{3a}\sin^(n-3)ax\cos^3ax


\implies I(n,a)=\frac{2n-3}nI(n-2,a)-\frac{n-3}nI(n-4,a)+\frac1{na}\sin^(n-3)ax\cos^3ax
User Singer
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories