90.3k views
3 votes
What is the frequency of the function f(x)?
f(x)=1/4cos(2x)+5

1 Answer

5 votes

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ % function transformations for trigonometric functions % templates f(x)=Asin(Bx+C)+D \\\\ f(x)=Acos(Bx+C)+D\\\\ f(x)=Atan(Bx+C)+D \\\\ -------------------


\bf \bullet \textit{ stretches or shrinks}\\ ~~~~~~\textit{horizontally by amplitude } A\cdot B\\\\ \bullet \textit{ flips it upside-down if }A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }B\textit{ is negative}


\bf ~~~~~~\textit{reflection over the y-axis} \\\\ \bullet \textit{ horizontal shift by }(C)/(B)\\ ~~~~~~if\ (C)/(B)\textit{ is negative, to the right}\\\\ ~~~~~~if\ (C)/(B)\textit{ is positive, to the left}\\\\ \bullet \textit{vertical shift by }D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}


\bf \bullet \textit{function period or frequency}\\ ~~~~~~(2\pi )/(B)\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ ~~~~~~(\pi )/(B)\ for\ tan(\theta),\ cot(\theta)

the frequency or Period of the function will then be


\bf f(x)=\cfrac{1}{4}cos(\stackrel{B}{2}x)+5\qquad \qquad \stackrel{period}{\cfrac{2}{B}}\implies \cfrac{2\pi }{2}\implies \pi
User Vrdse
by
5.8k points