Answer:
and
![x=2√(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/vfisrs5tl012ammhemxsxuzc7mc8jyk16h.png)
Explanation:
The given equation is
![(1)/(x)+(1)/(x+4)=(1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ovexplss0wmtpb2mlq4j493g56um8lhwac.png)
We need to solve the given equation.
Taking LCM on left side.
![((x+4)+x)/(x(x+4))=(1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/tmfzqnotd5zv62t5yflibecgs7b78e4yzq.png)
![(2x+4)/(x^2+4x)=(1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/loo1bx4047scvuawscdcm48iyshbpo08hx.png)
On cross multiplication we get
![2(2x+4)=x^2+4x](https://img.qammunity.org/2019/formulas/mathematics/high-school/552hiz1xr9st3u889uy16w25cezuq0dzz9.png)
![4x+8=x^2+4x](https://img.qammunity.org/2019/formulas/mathematics/high-school/gnkq8cqxs0waep6c51ve4hlr6540j9gm1a.png)
Subtract 4x from both sides.
![8=x^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/aln092gs5fxiwaoopq5r12kiotc70dw8we.png)
Taking square root on both sides.
![\pm√(8)=x](https://img.qammunity.org/2019/formulas/mathematics/high-school/v6qnlalqcdj3wf7bld8axchp3ben2zppxx.png)
![\pm2√(2)=x](https://img.qammunity.org/2019/formulas/mathematics/high-school/ja91wt04l1wiyalep1904w40ci637pa9vz.png)
Therefore, solutions of the given equation are
and
.