Answer:
Here we have right triangles, which we can solve using trigonometric reasons, bceause we know the acute angles and the hypothenuse of the bigger right triangle.
Let's the sin function
![sin30=(x)/(15)\\ x=15(sin30)\\x=15((1)/(2) )\\x=(15)/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/uvxmeql4t4sxhtt9psvn96xklmo0yrc2qi.png)
Then, we use the cosine function
![cos30=(z)/(15)\\ z=15((√(3) )/(2) )](https://img.qammunity.org/2019/formulas/mathematics/high-school/rv6du859lfm8shaojxmz5xghhucv5dzdaa.png)
Now, we use the sin to find
in the middle size right triangle
![sin30=(y)/(15(√(3) )/(2) )\\ y=(1)/(2) * 15(√(3) )/(2)\\ y=15(√(3) )/(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/jyzl8e1x9a2cba5lmknnjrr173h4a1qrrf.png)
Then, we use cosine in the smaller triangle
![cos60=(a)/((15)/(2) ) \\a=(15)/(2) * (1)/(2)\\ a=(15)/(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/g8p8ighjklgecjg9jaynfuf55rq6os5ipp.png)
Also, we know that
, and
, so
![b=15-a\\b=15-(15)/(4)\\ b=(60-15)/(4)\\ b=(45)/(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/rwvksh97p3u8poblwif1l9y3a051xfh3me.png)
Therefore, all the answers are
![x= (15)/(2)\\ y=15(√(3) )/(4)\\ z=15(√(3) )/(2)\\a=(15)/(4)\\ b=(45)/(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/7glz9q02l9i1xatx3ypa97fmvldbro18fl.png)