131k views
5 votes
1a. Given that P = (5,4), Q = (7,3), R = (8,6), and S = (4,1), find the component form of the vector PQ + 3RS.

a. (-10,-16)
b. (-6,4)
c. (-2,-6)
d. (14,14)

1b. Use the information from 1a to find the magnitude of the vector PQ + 3RS.

a. 356
b. √26
c. 2√10
d. 2√89

2a. Given that P = (5,4), Q = (7,3), R = (8,6), and S = (4,1), find the component form of the vector PQ + 4RS.

a. (18,19)
b. (-2,-6)
c. (-14,-21)
d. (-18,-19)

2b. Use the information from 2a to find the magnitude of the vector PQ + 4RS.

a. 2√10
b. 7√10
c. √35
d. 637

3a. Given that P = (5,4), Q = (7,3), R = (8,6), and S = (4,1), find the component form of the vector PQ + 5RS.

a. (22,24)
b. (-2,-6)
c. (-18,-26)
d. (-22,-24)

3b. Use the information from 3a to find the magnitude of the vector PQ + 5RS.

a. 1000
b. 10√10
c. 2√11
d. 2√10

User Lynette
by
8.0k points

2 Answers

2 votes
1a. A
1b. D
2a. C
2b. B
3a. C
3b. B
User Wajax
by
7.5k points
2 votes

Answer:

1a) a)
\overrightarrow {\alpha} = (-10,-16), 1b)
\| \overrightarrow {\alpha} \| = 2√(89), 2a)
\overrightarrow {\alpha} = (-14,-21), 2b)
\| \overrightarrow {\alpha} \| = 7√(13), 3a)
\overrightarrow {\alpha} = (-18,-26), 3b)
\| \overrightarrow {\alpha} \| = 10√(10)

Explanation:

1a) The vectors
\overrightarrow {PQ} and
\overrightarrow {RS} are determined:


\overrightarrow {PQ} = (7-5,3-4)


\overrightarrow {PQ} = (2, -1)


\overrightarrow {RS} = (4-8,1-6)


\overrightarrow {RS} = (-4, -5)

The component form of the resultant vector is:


\overrightarrow {\alpha} = (2 -12, -1-15)


\overrightarrow {\alpha} = (-10,-16)

1b) The magnitude of the resultant vector is:


\| \overrightarrow {\alpha} \| = \sqrt{(-10)^(2)+(-16)^(2)}


\| \overrightarrow {\alpha} \| = 2√(89)

2a) The vectors
\overrightarrow {PQ} and
\overrightarrow {RS} are determined:


\overrightarrow {PQ} = (7-5,3-4)


\overrightarrow {PQ} = (2, -1)


\overrightarrow {RS} = (4-8,1-6)


\overrightarrow {RS} = (-4, -5)

The component form of the resultant vector is:


\overrightarrow {\alpha} = (2 -16, -1-20)


\overrightarrow {\alpha} = (-14,-21)

2b) The magnitude of the resultant vector is:


\| \overrightarrow {\alpha} \| = \sqrt{(-14)^(2)+(-21)^(2)}


\| \overrightarrow {\alpha} \| = 7√(13)

3a) The vectors
\overrightarrow {PQ} and
\overrightarrow {RS} are determined:


\overrightarrow {PQ} = (7-5,3-4)


\overrightarrow {PQ} = (2, -1)


\overrightarrow {RS} = (4-8,1-6)


\overrightarrow {RS} = (-4, -5)

The component form of the resultant vector is:


\overrightarrow {\alpha} = (2 -20, -1-25)


\overrightarrow {\alpha} = (-18,-26)

3b) The magnitude of the resultant vector is:


\| \overrightarrow {\alpha} \| = \sqrt{(-18)^(2)+(-26)^(2)}


\| \overrightarrow {\alpha} \| = 10√(10)

User Sobri
by
8.3k points