104k views
1 vote
How to do this inverse proportion table

How to do this inverse proportion table-example-1
User Priyadi
by
7.4k points

2 Answers

2 votes
y=k/√x,


First way,

y=k/√x
You can find k.
24=k/√100
24 = k/10
k=24*10, k=240

y=240/√x

When x=36
y=240/√x
y=240/(√36)=240/(6)= 40,

so
when x=36, y= 40

When y=600,
y=240/√x
y=600
600=240/√x
√x =240/600 = 24/60=0.4
x=(0.4)²=0.16
When y=600, x=0.16



Second way
y1=k/√x1 (1)
and y2=k/√x2 (2),
When you divide equation 2 by equation 1, you get

y2/y1 = √x1/√x2.


So,
24/y2= √36/√100
24/y2=6/10
y2=24*10/6=40
For x=36, y=40.

24/600 = √x1/√100
√x1 = 24*√100/600=240/600=0.4
√x1=0.4
x1=0.4²=0.16
x1=0.16

For x=0.16, y =600.


User Russ Bradberry
by
9.2k points
2 votes

\bf \qquad \qquad \textit{inverse proportional variation} \\\\ \textit{\underline{y} varies inversely with \underline{x}}\qquad \qquad y=\cfrac{k}{x}\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array}\\\\ -------------------------------\\\\ \textit{\underline{y} is inversely proportional to square root of \underline{x}}\qquad y=\cfrac{k}{√(x)}


\bf \textit{we also know that } \begin{cases} y=24\\ x=100 \end{cases}\implies 24=\cfrac{k}{√(100)}\implies 24=\cfrac{k}{10} \\\\\\ 240=k\qquad \qquad \boxed{y=\cfrac{240}{√(x)}}


\bf \textit{when x = 36, what is \underline{y}?}\qquad y=\cfrac{240}{√(36)}\implies y=\cfrac{240}{6}\implies y=40 \\\\\\ \textit{when y = 600, what is \underline{x}?}\qquad 600=\cfrac{240}{√(x)}\implies √(x)=\cfrac{240}{600} \\\\\\ √(x)=\cfrac{2}{5}\implies x=\left( \cfrac{2}{5} \right)^2\implies x=\left( \cfrac{2^2}{5^2} \right)\implies x=\cfrac{4}{25}
User Ose
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories