19.6k views
1 vote
Solve the given initial-value problem. x^2y'' + xy' + y = 0, y(1) = 1, y'(1) = 8

1 Answer

5 votes
Substitute
z=\ln x, so that


(\mathrm dy)/(\mathrm dx)=(\mathrm dy)/(\mathrm dz)\cdot(\mathrm dz)/(\mathrm dx)=\frac1x(\mathrm dy)/(\mathrm dz)


(\mathrm d^2y)/(\mathrm dx^2)=(\mathrm d)/(\mathrm dx)\left[\frac1x(\mathrm dy)/(\mathrm dz)\right]=-\frac1{x^2}(\mathrm dy)/(\mathrm dz)+\frac1x\left(\frac1x(\mathrm d^2y)/(\mathrm dz^2)\right)=\frac1{x^2}\left((\mathrm d^2y)/(\mathrm dz^2)-(\mathrm dy)/(\mathrm dz)\right)

Then the ODE becomes



x^2(\mathrm d^2y)/(\mathrm dx^2)+x(\mathrm dy)/(\mathrm dx)+y=0\implies\left((\mathrm d^2y)/(\mathrm dz^2)-(\mathrm dy)/(\mathrm dz)\right)+(\mathrm dy)/(\mathrm dz)+y=0

\implies(\mathrm d^2y)/(\mathrm dz^2)+y=0

which has the characteristic equation
r^2+1=0 with roots at
r=\pm i. This means the characteristic solution for
y(z) is


y_C(z)=C_1\cos z+C_2\sin z

and in terms of
y(x), this is


y_C(x)=C_1\cos(\ln x)+C_2\sin(\ln x)

From the given initial conditions, we find


y(1)=1\implies 1=C_1\cos0+C_2\sin0\implies C_1=1

y'(1)=8\implies 8=-C_1\frac{\sin0}1+C_2\frac{\cos0}1\implies C_2=8

so the particular solution to the IVP is


y(x)=\cos(\ln x)+8\sin(\ln x)
User Colin D Bennett
by
8.8k points

No related questions found