The mutual information
![MI](https://img.qammunity.org/2019/formulas/mathematics/college/ae78ta329x5rgavffd3hck2ll12pbchpfj.png)
![MI=\displaystyle\sum_(x,y)p(x,y)\ln(p(x,y))/(p(x)p(y))](https://img.qammunity.org/2019/formulas/mathematics/college/bkgd9pa5z7sd8o1qnmeikt66hclw4seeo2.png)
First compute the marginal distributions for
![X](https://img.qammunity.org/2019/formulas/mathematics/high-school/eimlfkd3wg6spqi9eymhws47qa4mjqcdax.png)
and
![Y](https://img.qammunity.org/2019/formulas/mathematics/college/gs2r94lw2kbkatrdryn3y151me1d9qivs8.png)
.
![p(x)=\begin{cases}\frac23&\text{for }x=0\\\frac13&\text{for }x=1\end{cases}](https://img.qammunity.org/2019/formulas/mathematics/college/c1okob3mw137b0zhfq5exbxh8zp6f0srv2.png)
![Y](https://img.qammunity.org/2019/formulas/mathematics/college/gs2r94lw2kbkatrdryn3y151me1d9qivs8.png)
has the same marginal distribution (replace
![x](https://img.qammunity.org/2019/formulas/mathematics/college/lhtxftojjkzsmo3o2h4ilq8naohracejui.png)
with
![y](https://img.qammunity.org/2019/formulas/mathematics/high-school/551wa7vx8x4hkmlfqcjacsdp8yeixdrxer.png)
above).
The support for the joint PMF are the points (0,0), (1,0), and (0,1), so this is what you sum over. We get
![MI=p(0,0)\ln(p(0,0))/(p_X(0)p_Y(0))+p(1,0)\ln(p(1,0))/(p_X(1)p_Y(0))+p(0,1)\ln(p(0,1))/(p_X(0)p_Y(1))](https://img.qammunity.org/2019/formulas/mathematics/college/q61acrbrsbipya9ae7bfmlz7xlt3lsfz03.png)
![MI=\frac13\ln(\frac13)/(\frac23\cdot\frac23)+\frac13\ln(\frac13)/(\frac13\cdot\frac23)+\frac13\ln(\frac13)/(\frac23\cdot\frac13)](https://img.qammunity.org/2019/formulas/mathematics/college/kkhcapbyfo8ljc0qxx3adskd12f86jzo39.png)
![MI\approx<span>0.174](https://img.qammunity.org/2019/formulas/mathematics/college/6tzn5s6q65ao1pt7cc2oeyw6qxzbv5wu7c.png)
Be sure to check how mutual information is defined in your text/notes. I used the natural logarithm above.