Let x represent miles and y represent dollars.
That gives you coordinates (120, 70) and (50, 102.5).
First, find the slope (m) of the line using
![(y_(2) - y_(1) )/( x_(2) - x_(1))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/wr9d2t6v7oswo79m16eobiex9kxa1txh9h.png)
m =
![(70 - 102.5)/(120 - 50)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/iltif8aj2fghytkio808kdp1l4rpfhw2ji.png)
=
![(-32.5)/(70)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/r6mhl9ou6fd5o7be3ftlaavwr8np7lq31t.png)
=
![(-65)/(140) = (-13)/(28)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/pine9o2az02mvv3x7gp28obwvkpe9zpd0q.png)
Note: slope is rate of change.
Next, use the Point-Slope formula and solve for y:
y -
![y_(1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/blapt9r90e3ew2mprwtvp79gf80506r2pm.png)
= m (x -
![x_(1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/pgu8t3g34rla1vys5f1q1v4jsuj4vi3cup.png)
)
y - 70 =
![(-13)/(28)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7n29q2ud8pnc1xqqfbzvct36i789mdxkei.png)
(x - 120)
y - 70 =
![(-13)/(28)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7n29q2ud8pnc1xqqfbzvct36i789mdxkei.png)
x +
![(390)/(7)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/4xsc7sojbp2yfla0pmp4hk5cxywtd5rwwc.png)
y =
![(-13)/(28)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7n29q2ud8pnc1xqqfbzvct36i789mdxkei.png)
x +
Answer: linear function is: y =
![(-13)/(28)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7n29q2ud8pnc1xqqfbzvct36i789mdxkei.png)
x +
![(880)/(7)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/t3ygoiaue5lu53zbt4r0bdr55wcqunqts3.png)
rate of change is:
initial value of the function: