Answer:
The approximate z-score for the value 64 is -1.4.
Explanation:
Since, the z-score or standard score for the value x is,
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2019/formulas/mathematics/college/u4ithhep47bpu4c0nca9bhq3gnmjzjkce5.png)
Where,
is the mean score,
is the standard deviation,
Here, x = 64,
![\mu=90](https://img.qammunity.org/2019/formulas/mathematics/high-school/kttp78bya4vncy6odtswdklu0lnsrahjdx.png)
![\sigma=18](https://img.qammunity.org/2019/formulas/mathematics/high-school/az3zsek50uujsh15rftc6cbj03irn31svg.png)
Hence, the z-score for the value 64 is,
![z=(64-90)/(18)](https://img.qammunity.org/2019/formulas/mathematics/high-school/zpti9xveadhgz8l1jqxudwei5kx0byfni4.png)
![=(-26)/(18)](https://img.qammunity.org/2019/formulas/mathematics/high-school/r9q35mxxsoockjxy3j4kpiglh9rw7ccg4h.png)
![=-1.44444444444\approx -1.4](https://img.qammunity.org/2019/formulas/mathematics/high-school/jdaiuwyt1qg7nyxlavpaas6ma1wknrj707.png)
Second option is correct.