We're given the following equation:
![y=(x^2+2)^3(x^3+3)^2](https://img.qammunity.org/2019/formulas/mathematics/college/7lkbmpspcwbwg5azfrizbhmwu4mzuoug7i.png)
In order to find
![(dy)/(dx)](https://img.qammunity.org/2019/formulas/mathematics/college/4d2rkwdwf2th25dlpfl1px42edrnrlr8q3.png)
we must differentiate both sides of the equation.
Lets start differentiating the left side (
![y](https://img.qammunity.org/2019/formulas/mathematics/high-school/551wa7vx8x4hkmlfqcjacsdp8yeixdrxer.png)
):
![(d)/(dy) y=(1)dy=dy](https://img.qammunity.org/2019/formulas/mathematics/college/19e8eotp8f8huv6i3fddz2q5trjtj0j866.png)
The
![(d)/(dy)](https://img.qammunity.org/2019/formulas/mathematics/college/xxyhikbsv36f2i5a46k1tcg59sp01y6lqs.png)
simply servers to let us know we're differentiating whatever follows it (in this case
![y](https://img.qammunity.org/2019/formulas/mathematics/high-school/551wa7vx8x4hkmlfqcjacsdp8yeixdrxer.png)
) with respect to
![y](https://img.qammunity.org/2019/formulas/mathematics/high-school/551wa7vx8x4hkmlfqcjacsdp8yeixdrxer.png)
.
What we used to get the result is called the "power rule for differentiation" it states the following:
![(d)/(ds) s^(n)=ns^(n-1)](https://img.qammunity.org/2019/formulas/mathematics/college/objxx63hcos8eyz5vvcyjs7uec4rm33cut.png)
In which
![s](https://img.qammunity.org/2019/formulas/mathematics/college/whs484g53j2g6yxt5zxzxiyt5qdk13a5th.png)
is any variable (in the previous case
![y](https://img.qammunity.org/2019/formulas/mathematics/high-school/551wa7vx8x4hkmlfqcjacsdp8yeixdrxer.png)
) and
![n](https://img.qammunity.org/2019/formulas/mathematics/high-school/u98o0n5r87kmrf87sepfzfho8c4geg07lg.png)
is any constant (in the previous case this
![n=1](https://img.qammunity.org/2019/formulas/mathematics/college/ozpyzwssoaqxtmv6uykuse1y4zve7hxxnp.png)
).
Now we'll differentiate the right side of the equation (
![(x^2+2)^3(x^3+3)^2](https://img.qammunity.org/2019/formulas/mathematics/college/t73402o4ucd7jgvjzqv7afozc26alxpeku.png)
):
![(d)/(dx)(x^2+2)^3(x^3+3)^2=[6x(x^2+2)^2(x^3+3)^2+6x^2(x^3+3)(x^2+2)^3]dx](https://img.qammunity.org/2019/formulas/mathematics/college/gokjigk8hlp9iqk770t7eogm57osyymq36.png)
What we did to differentiate the right side was, first, apply something called "product rule" for differentiation, it states the following:
![(d)/(ds)[f(s)g(s)]= (d)/(ds)[f(s)]g(s)+(d)/(ds)[g(s)]f(s)](https://img.qammunity.org/2019/formulas/mathematics/college/uluapyujye159tlmve0lwo9xua09xxdidl.png)
In which
![f(s)](https://img.qammunity.org/2019/formulas/mathematics/college/p7uvbrrxxtisqjnfn0l986b3b865irrah0.png)
and
![g(s)](https://img.qammunity.org/2019/formulas/mathematics/college/r4vbljn4orp5tsd1n9qzadoyng7r6ltefv.png)
are arbitrary functions of an arbitrary variable (
![s](https://img.qammunity.org/2019/formulas/mathematics/college/whs484g53j2g6yxt5zxzxiyt5qdk13a5th.png)
) (in this case
![f(s)=f(x)=(x^2+2)^3](https://img.qammunity.org/2019/formulas/mathematics/college/zi6a8wth4bitaivj0wlwfstslbo9u5kb06.png)
and
![g(s)=g(x)=(x^3+3)^2](https://img.qammunity.org/2019/formulas/mathematics/college/ufly41rx5k5tbdelf1xo2y7z7sl6fcxa6o.png)
).
After that we applied something called "chain rule" for differentiation, which states the following:
if
![h(s)=g(f(s))](https://img.qammunity.org/2019/formulas/mathematics/college/wsoqwwfsun3xbvzo7jd7rrb2zs090hk1yn.png)
, then
![(d)/(ds)[h(s)]= (d)/(ds)[g(f(s))] (d)/(ds)[f(s)]](https://img.qammunity.org/2019/formulas/mathematics/college/jae5vwkz001u1q24cppze21eidf1hj70c6.png)
Finally, the
![dx](https://img.qammunity.org/2019/formulas/mathematics/college/nr71my4qchz44m8ru74gv0mnky2jrwbpg0.png)
we introduced as a factor after differentiating the right side (we also did it with the left side but with a
![dy](https://img.qammunity.org/2019/formulas/mathematics/college/etklu68g0ulvmgi8ekzr9bs59emc703czr.png)
) is a consequence of the chain rule, it is always done.
Finally, equaling both differentiated sides of the equation we have:
We solve for
, and the answer is:
![(dy)/(dx) =6x(x^2+2)^2(x^3+3)^2+6x^2(x^3+3)(x^2+2)^3](https://img.qammunity.org/2019/formulas/mathematics/college/wuqgbfga6altliruzp0bz3ty91mg2ag3lg.png)