Answer:
![\displaystyle y' = 6x + 2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/2er1nckm5wn57heisapoxcbpw28j6mjc80.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/h3h81fknzks3m5lkzvmdwrmpof8mpsbacs.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2019/formulas/mathematics/high-school/zd1isc8p8d61dms4m7tlsdvpezlc3t2ts1.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Explanation:
Step 1: Define
Identify
![\displaystyle y = 2x + 3x^2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ak2rcmv791lwr8e5oj1xmrcxnnihu5in5p.png)
Step 2: Differentiate
- Derivative Property [Addition/Subtraction]:
![\displaystyle y' = (2x)' + (3x^2)'](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ybk3g4bqny6oz2p6tlcfb6wo41wr5cb2mk.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle y' = 2(x)' + 3(x^2)'](https://img.qammunity.org/2019/formulas/mathematics/middle-school/90gxo646uf0xcxmbev3haj8fuc2bbbfwby.png)
- Basic Power Rule:
![\displaystyle y' = 2 + 6x](https://img.qammunity.org/2019/formulas/mathematics/middle-school/85e9hhlbg0oydiqz10d0pg8m8ledh97ppe.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation