Answer:
A numerical value of one trigonometric function of x, for the given function would be
![cos(x)=(1)/(3)](https://img.qammunity.org/2019/formulas/mathematics/college/z6gf4886bwnxm4gyzptdq9ulhi753g70gy.png)
Explanation:
We know that there are many trigonometric functions, that can be expressed as functions of x, for example:
![sin(x)](https://img.qammunity.org/2019/formulas/mathematics/college/kj5mo2sdvoct7e7hrfo9me5xexnpivpm2d.png)
![cos(x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7r7rcizaq1sbi5367t91cnqa5t82lcu8f7.png)
![tan(x)](https://img.qammunity.org/2019/formulas/mathematics/college/hacrz43bibvdtpe3gb6d2a80kg8wy8vtqu.png)
![cot(x)](https://img.qammunity.org/2019/formulas/mathematics/college/y8hjozeviwrya2w71eexgnklzx25l04jih.png)
![csc(x)](https://img.qammunity.org/2019/formulas/mathematics/college/ycs2rumjokbszlcllbrplomjqiurl90qni.png)
So, the problem is aking us for one trigonometric function of x, but gives us a product of functions of x, instead of one function of x. We note then, that
![cot(x)=(cos(x))/(sin(x))](https://img.qammunity.org/2019/formulas/mathematics/college/k7lpx47c4fg6fuil484ql217s09pt4hsbu.png)
Therefore, we calculate from the given function
![sin(x)*(cos(x))/(sin(x))=cos(x)=(1)/(3)](https://img.qammunity.org/2019/formulas/mathematics/college/9j7w4ix82gszqomoze0956au2xam9th5ry.png)
wich is our answer, furthermore, we could calculate the value of x for this case
![x=cos^-1((1)/(3))\approx70.5](https://img.qammunity.org/2019/formulas/mathematics/college/vpkkrlj0gtoeldqsxblwuvzw2df2muj7ko.png)