Answer:
The graph in the attached figure
Explanation:
we have
![x+2y > 4](https://img.qammunity.org/2019/formulas/mathematics/college/tbrc3y5g5b80cy0l6db7awztvh7ooyksjs.png)
we know that
The solution of the inequality is the shaded area above the dashed line
The equation of the line is
![x+2y = 4](https://img.qammunity.org/2019/formulas/mathematics/college/ay01verfyx63q0u3d7e11h5lzmrw6uc5s4.png)
Find the x-intercept
For
![y=0](https://img.qammunity.org/2019/formulas/mathematics/college/r0jlugcrkk1got8vuljk2uj8h02jl3vmti.png)
![x+2*0 = 4](https://img.qammunity.org/2019/formulas/mathematics/college/pt4bnvcc1k6o9zxofmrpyl6td48nxhe1f4.png)
![x=4](https://img.qammunity.org/2019/formulas/mathematics/middle-school/i23qk0uwhi1ehnolmndlq35wd5e9sddv2g.png)
The x-intercept is the point
![(4,0)](https://img.qammunity.org/2019/formulas/mathematics/college/8quwxdd1dguxn3spg78oeejej4ogx499zq.png)
Find the y-intercept
For
![x=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/9kvijf358dstmx6gyc4kvxfk183uebfiu1.png)
![0+2y = 4](https://img.qammunity.org/2019/formulas/mathematics/college/y6thtlcnz7zoru7fa2o46t9mqepnvs8v5h.png)
![2y=4](https://img.qammunity.org/2019/formulas/mathematics/college/qqf5w331hpengdbpql53w7jwn0azlqvkyq.png)
![y=2](https://img.qammunity.org/2019/formulas/mathematics/college/tquxylgweahecj9nmpjyvd93pf2a81t5mh.png)
The y-intercept is the point
![(0,2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/yikbunn0hen6517t2jd07d6zlxa2yhf282.png)
therefore
The graph in the attached figure