98,485 views
12 votes
12 votes
HELP I NEED THIS ANSWER ASAP!!!! PLS HELP VERY SOON!

If the expression
(3^a*√(6) )/(9*√(54) ) is equal to 1, what is the value of a?


A. 1

B. 2

C.3

D.4

User Shagun Sodhani
by
3.4k points

1 Answer

6 votes
6 votes

Answer:


C.3

Explanation:


We\ are\ given:\\(3^a*√(6) )/(9*√(54))=1\\Hence,\\By\ using\ one\ of\ the\ Laws\ of\ Exponents:[(x^a)/(y^a)]=[(x)/(y)]^a\\Hence,\\(3^a*√(6) )/(9*√(54) )=1\\ (3^a)/(9)*(√(6) )/(√(54) ) =1\\Hence,\\(3^a)/(9)*\sqrt{(6)/(54) }=1\\ (3^a)/(9)*\sqrt{(1)/(9) }=1\\(3^a)/(9)*(1)/(3)=1\\\\3^a=3*9\\3^a=27\\3^a=3^3\\As\ the\ bases(3)\ is\ equal,\ the\ exponents\ are\ equal\ too.\\Hence,\\a=3

User Cleptus
by
3.9k points