98.5k views
12 votes
HELP I NEED THIS ANSWER ASAP!!!! PLS HELP VERY SOON!

If the expression
(3^a*√(6) )/(9*√(54) ) is equal to 1, what is the value of a?


A. 1

B. 2

C.3

D.4

1 Answer

6 votes

Answer:


C.3

Explanation:


We\ are\ given:\\(3^a*√(6) )/(9*√(54))=1\\Hence,\\By\ using\ one\ of\ the\ Laws\ of\ Exponents:[(x^a)/(y^a)]=[(x)/(y)]^a\\Hence,\\(3^a*√(6) )/(9*√(54) )=1\\ (3^a)/(9)*(√(6) )/(√(54) ) =1\\Hence,\\(3^a)/(9)*\sqrt{(6)/(54) }=1\\ (3^a)/(9)*\sqrt{(1)/(9) }=1\\(3^a)/(9)*(1)/(3)=1\\\\3^a=3*9\\3^a=27\\3^a=3^3\\As\ the\ bases(3)\ is\ equal,\ the\ exponents\ are\ equal\ too.\\Hence,\\a=3

User Cleptus
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories