The local extremas of a function, f(x), occur when the derivative of the function, f'(x), equals zero.
Given the function:

The derivative of the function is given by:
![12y^2f'(x)+36x-36[xf'(x)+y]=0 \\ \\ \Rightarrow12y^2f'(x)+36x-36xf'(x)-36y=0 \\ \\ \Rightarrow(12y^2-36x)f'(x)=36y-36x \\ \\ \Rightarrow f'(x)= (36(y-x))/(12(y^2-3x)) = (3(y-x))/(y^2-3x)](https://img.qammunity.org/2019/formulas/mathematics/college/p9kyd8jyj0zto7p4mor8cocfzqjjhyhos7.png)
At the local extremas,

and

. i.e.

Recall that


. . . (1)

. . . (2)
But from (1),

Therefore, the local extremas are (0, 0) and (3, 3)