The local extremas of a function, f(x), occur when the derivative of the function, f'(x), equals zero.
Given the function:
![f(x, y) = 4y^3 + 18x^2 - 36xy](https://img.qammunity.org/2019/formulas/mathematics/college/ldnwz7cv2mezuyrj6z6pj2wpjen6srz4mx.png)
The derivative of the function is given by:
![12y^2f'(x)+36x-36[xf'(x)+y]=0 \\ \\ \Rightarrow12y^2f'(x)+36x-36xf'(x)-36y=0 \\ \\ \Rightarrow(12y^2-36x)f'(x)=36y-36x \\ \\ \Rightarrow f'(x)= (36(y-x))/(12(y^2-3x)) = (3(y-x))/(y^2-3x)](https://img.qammunity.org/2019/formulas/mathematics/college/p9kyd8jyj0zto7p4mor8cocfzqjjhyhos7.png)
At the local extremas,
![(\partial)/(\partial x) =0](https://img.qammunity.org/2019/formulas/mathematics/college/zd2ubit0yd0zuq4iwxktpvustaf4gfm9gf.png)
and
![(\partial)/(\partial y) =0](https://img.qammunity.org/2019/formulas/mathematics/college/3z7n4ek6zi0qqfu62ymv4919sh8mat3f0k.png)
. i.e.
![(\partial)/(\partial x) =(\partial)/(\partial y)](https://img.qammunity.org/2019/formulas/mathematics/college/qwvj8kplymvmm78outci2gvclazg787ahx.png)
Recall that
![f'(x)= ( (\partial)/(\partial x) )/((\partial)/(\partial y)) = (3(y-x))/(y^2-3x) \\ \\ \Rightarrow(\partial)/(\partial x)=3(y-x)\ and\ (\partial)/(\partial y)=y^2-3x](https://img.qammunity.org/2019/formulas/mathematics/college/c7vvsbaj5caqgb27xhexk4y66m4vinnjg7.png)
![(\partial)/(\partial x)=0 \\ \\ \Rightarrow3(y-x)=0 \\ \\ y-x=0 \\ \\ y=x](https://img.qammunity.org/2019/formulas/mathematics/college/5a24y90vzx6znkuo0k3juldu0ytwepr27v.png)
. . . (1)
![(\partial)/(\partial y)=0 \\ \\ y^2-3x=0](https://img.qammunity.org/2019/formulas/mathematics/college/ohy79gx7llxstz067o7kjm8el2nimpmmff.png)
. . . (2)
But from (1),
![y=x \\ \\ \Rightarrow x^2-3x=0 \\ \\ \Rightarrow x(x-3)=0 \\ \\ \Rightarrow x=0\ and\ x-3=0 \\ \\ \Rightarrow x=0\ and\ x=3](https://img.qammunity.org/2019/formulas/mathematics/college/ld0def2r1q9xoa1r9pnjijdu763pucg3mk.png)
Therefore, the local extremas are (0, 0) and (3, 3)